
2510 lEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 10, OCTOBER 1995

Finite-Difference Time-Domain Analysis
of Microwave Circuit Devices on High

Performance Vector/Parallel Computers

Stephen D. Gedney

Abstract— In this paper, an efficient finite-difference time-domain
algorithm for high performance distributed memory vector/parallel com-
pnters is presented. The algorithm is developed in a manner which
requires only one interprocessor communication per time step. Illustrated
examples based on the analysis of microwave circuit devices are presented
demonstrating the efficiency and scalability of the finite-difference time-
domain rdgorithm.

I. INTRODUCTION

The finite-difference time-domain (FDTD) algorithm is an ideal

rdgorithm for both vector processors and distributed memory mul-
tiprocessor computers. The kernel of the algorithm is a vector
update operation that is readily vectorizable. Employment on dis-
tributed memory multiprocessor computers requires limited amounts
of message passing between neighboring processors, leading to a
highly scalable algorithm. By exploiting the architecture’s of high
performance vectotlparallel computers, the problem sizes that can be
currently solved using the FDTD are orders of magnitudes larger
than problems that could have been treated only two or three years
ago. As a result, the FDTD method has been highly effective for

numerous applications, including the modeling of microwave circuit

devices [1], [2]. As memory densities and CPU speeds continue to
increase at extraordinary rates, so will the potential of this technique.

In this paper a parallel FDTD algorithm is presented. The algorithm
is based on a spatial decomposition of the orthogonal lattice structure.
It is shown that only one interprocessor communication per time
iteration is necessary, leading to higher parallel efficiencies than
previous algorithms. Test cases based on a simple 3 dB Wilkinson
power divider, and an 8-way power divider are presented. It is thus
demonstrated that the parallel algorithm presented herein is scalable,
and extremely efficient for parallel platforms.

11. THE FDTD ALGORITHM

The finite-difference time-domain algorithm is based on central
difference approximations of the spatial and time derivatives of
Maxwell’s curl equations. This is achieved by projecting orthogonal
components of the electric and magnetic field intensity vectors onto
the edges of a dual, staggered, orthogonal grid [3], [4]. By staggering
the vector fields both in space and time, a second-order accurate
explicit time-marching solution is obtained. This leads to the explicit
time-domain solution for the discrete electric and magnetic field
vectors [3], [4], e.g., (1) and (2) as shown at the bottom of the
next page, where, s,, ~,, and a represent the averaged relative
perrnittivity and permeability, and the averaged absolute conductivity,

Manuscript received Febraary 7, 1995; revised June 29, 1995.
This work was supported in part by Grant DAAH04-94-G-0243 from the

Army Research Office, Research Triangle Park, NC, and by NSF Award
ECS-9309179. It was performed in part on the University of Kentucky”s 32-
node iPSC/860, which was supported by Grants from the National Science
Foundation (EMS-9206014), Intel Corp. (iSC022492), and the Army Research
Office (DAAH04-93-G-0453).

The author is with the Department of Electrical Engineering, University of
Kentucky, Lexington, KY 40506-0046 USA.

IEEE Log Number 9414244.

respectively, along the grid edges, co is the speed of light in free

space, and the remaining field components are similarly updated. Note
that the electric and magnetic field intensities have been normalized as

‘=&

i=ti@j6 (3)

where TOis the free space characteristic wave impedance. The result
of this normalization is that the magnitudes of Z and ~ are of the
same order.

The most computationally intensive portion of the FDTD algorithm
is the explicit updates of the six vector field components, as expressed
in (1) and (2). Each vector update can be implemented using a triple
nested loop. A naive implementation of (1) and (2) would require

87 N floating-point operations per time iteration to update the six
field components throughout the entire space, where N = Nx Nv NZ,
and N., NV, and N. are the grid dimensions. A more traditional
approach, is to precompute the material related multipliers, which
thus reduces the number of floating-point operations to 45.V [4]. If
the space is assumed to be inhomogeneous in three-dimensions the
material related constants are also stored in three-dimensional arrays.
Thus, the total memory required to store the six field components and

the material constants associated with each of the field components
will be 15N floating point real numbers. In homogeneous media, or
one or two-dimensionaf inhomogeneities, this memory requirement
is relaxed.

The computational time can be further reduced by multiplying the
electric and magnetic field intensity vectors by their respective edge
lengths, e.g

e’
‘*+(1 /2), j,k ‘ex Z+(l/2), j, k

Ax. (4)

Subsequently, (1) and (2) are rewritten as

~/n+(l/2)

~t+(l/2), j, k
= D’‘*+(1/2),joke:;::;:;, j,k + %+(1/2),,, k

“{[

h
/?2

–hy+(1,2),,_(,,2 ),k
‘%+(1/2).3+(1/2), k 1

[– h;+(,,,), ,+(l,,l–h$+(l,,), ,_(,,,),> >> 1}
(5)

and
~ln+l
‘t, J+(l/2), k+(1/2)

=h: ,+(1,2) k+[,,2) – B:% ,+(1,2) k+(l,,)

“[

~/n+(l/2) _ ~/n+(l/2)

~t.3+1. k+(l/2) ‘%,?. k+(l/2)

+e
/n+(l/2) In+(lfz)
Y%, J+(l/2)>k+1 — ‘vt, ,+(1/2), k

1

where

B:t ,+(1,2), k+(1,2) =
Co At Ax

AY AZ PZ,~+(l/2).k+(I/z)

(6)

2E
D:,+(l,,] ~ , = ~~rL+(1r2)>”k–

co Atat+(lp). j, kvo

>>
“-t+(l,z,, j,k + co ~f@L+(l/2), J! ~70 ‘

~;,+(l,,l , , = 2 Ax COAt/Ay AZ[2C.,+(1,,) ,,,>,
+ C. At ~,+(1/2), j, ~nol. (7)

Similar expressions can be derived for the remaining field components
by permuting the indices in a right-handed manner. Based on these
expressions, the field updates will require 33N floating point opera-
tions per time iteration. This results in more than a 60% reduction as
compared to a naive approach and a 25% reduction compared to the
traditional approach. Furthermore, there are no additional memory

0018–9480/95$04.00 01995 IEEE



IEEE mNSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 10,OCTOBER 1995 2511

constraints as compared to the traditional approach. This technique

also has the advantage that special cases can be included directly in
the update expressions without the need for additional programming
logic in the update loops. For example, within a perfect electrical
conductor (PEC), the constants C’ within the PEC or on a PEC

surface can be set to zero. Subsequently, the electric and magnetic

fields within the PEC will remain zero throughout the computation
without any additional logic. In addition, passive lumped loads [5]
can atso be modeled directly within the field updates in (5) and (6)

by correctly constructing the coefficients C’ and D’. This leads to
a reduction in the overall CPU time of the FD-TD solution due to
improved vectorization and reduced operations, and also simplifies
the programming task.

III. PARALLEL IMPLEMENTATION ON

DISTRIBUTED MEMORY PARALLEL COMPUTERS

It has been demonstrated that the finite-difference time-domain
algorithm is ideally suited for implementation on multiple-instruction
multiple data (MIMD) [6], [7] and single-instruction multiple-data

(SIMD) [8], [9] high performance parallel computers. This is princi-

pally due to the regularity of the dual grid and the even distribution
of effort in time and space. The algorithm presented in this section
is primarily focused on MIMD type-architectures, such as the Intel
iPSC/860, Intel Paragon, or a PVM cluster, but can certainly be
implemented on SIMD architectures as well. Unlike the previous
algorithms presented in [6]–[9], it will be shown that only one
interprocessor communication needs be done per time iteration, which
increases the parallel efficiency of the algorithm. It will also be
demonstrated that it is extremely important to vectorize the core of

the FDTD algorithm to achieve optimal performance on today’s high
performance computers.

The parallel algorithm is based on a spatial decomposition of the
regular grid structure. To this end, the original domain is spatially

decomposed into contiguous subdomains [6]–[9]. The subdomains
are rectangular in shape, nonoverlapping, sharing common surfaces
only, and of equal size. The boundaries, or surfaces, shared by
subdomains are chosen by taking slices along edges of the primary
grid in the x, y, and z-directions. Thus, the discrete electric fields
are tangential and the discrete magnetic fields are normal to the
shared boundary surfaces. Each sub domain is then mapped onto
independent processors of the parallel computer. The electric fields

are updated using (5). Each edge is updated using the magnetic
field vectors normal to the four faces sharing this edge. However,
on a shared boundary, each processor has in local memory at most

three of the four faces needed to update the electric field, and it
becomes necessary to retrieve the needed data via interprocessor
communication. On the other hand, the magnetic field vectors normal

to the shared interface are updated using (6). Since each processor
has the updated value of the tangential electric fields on the shared
interface, the normal magnetic field can be updatecl independently
on each processor, and interprocessor communication is not needed.
Rather, it is more expedient to simply update the normal magnetic
fields redundantly on each processor sharing the face.

Tangential electric field vectors on exterior absorbing boundaries

must be updated using arn absorbing boundary condition (ABC).

The choice of an absorbing boundary condition can affect both the
accuracy as well as the efficiency of the parallel FDTD algorithm.
The widely used Mnr’s second-order ABC [4] requires transverse
derivatives, which will result in additional interprocessor commu-
nication on shared boundaries. On the other hancl, Liao’s ABC
[10] or the second-order dispersive bounda~ condition (DBC) [1 1],
are based on normal derivatives only. Based on the decomposition
described above, these operators will not require any additional
interprocessor communication, since all the necessary information
needed to compute the update is resident on each processor. The

only consequence, is that each processor sharing a field value will
perform the update redundantly.

IV. VECTORIZATION

Almost all of today’s distributed memory parallel ccjmputers utilize
RISC processors as central processing units (CPU’S). Most RISC
processors rely on pipelining to achieve maximum floating point
operation speeds and high speed cache to reduce memory access
time. The optimization of many RISC processors can be achieved in
the same manner as one would vectorize a program. Vectorization
is realized on the innermost loops of any multi-dimensional loop
structure and can be achieved in an optimal manner when: 1) the
inner loops are truly vector operations and are not corrupted by

function calls, or branch statements, 2) the inner-most column index
corresponds to the index of the inner loop, and 3) the length of
the inner loop is equal to or greater than the optimal vector length

(typically determined by the vector length of a vectc,r processor, or
the cache size of a pipelined processor).

The triple loops updating ez and hz based on (!$) and (6), are
implemented as

do10k=2, nz–1

do10j=2, ny–1
dolOi=l, nz–1

e~(i, j, k) = ckr(i, j, k)*ez(i, j, k) + (cz(i, j, k)”

. [hz(i, j, k) - kz(i, j -1, k) - hy(i, j, k)
+ h’g(i, j, k – 1)]

10 continue

~?z+(vz)

%%+(1/2),3, k
=

Co At 2 en–(1/2) 1

‘r,+(l/z),$,k + ~Offc+(l/Z),J, k ‘.+(llz),f, k + ‘r~+(l/Z),&k + ~OuZ+(l/2), J, k

Co At 2 COAt 2

“{h“
‘t+(l/2), j+(l/ 2), k

– h;%+(1,2) ,_(1,2) k hn
_ ?f.+(1/2),j,k+(l/2)

– h;,+(1,2) ,,k_(1,2)

Ay ‘ AZ ‘
}

(1)

~.+l
= h:

Co At
~.>3+(1/2), k+(l/2) .! J+(l/2), k+(1/2) —

&_., f+(l/2), k+(1/2)

“{

e;+(l/2) _ e;+(l/2) ?2+(1/2)
evt, j+(l/2), k+1

n+(l/2)
— ‘Vt, j+(l/2), k.>j+l, k+(l/2) .,J, k+(l/2) —

Ay Az
}

(2)



2512 IEEE TRANSACTIONS ONMICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 10, OCTOBER 1995

TABLE I
MFLOPS PER PROCESSORVERSUSINNER
LOOP LENGTH(IVV= 11 O, IV. =40)

Ivx i860(MFLOPS) cmy-YMP(MFLO s)P
2 ~
128 213
100 14.9 200
50 12.7 165
2.5 11.0 104
10 8.1 53.4

do20k=l, nz–1

do20j=l, ny–1

do20i=l, nx

ha(i, j, k) = luc(i, j, k) + bz(i, j, k)’

. [eg(i, j, k +1) - ey(i, j, k) - ez(i, ~ + 1, ~)

+ez(i, j, k)]

20 continue, (8)

Note that there is no extraneous logic embedded in either of these
triple loops. Rather, special conditions such as perfect conductors,
impedance boundaries, or lumped loads are modeled directly within
the coefficients bx, CX, and dz, preserving the inner vector loops.

The j and k indices of the em-update in (8) are looped over the

ranges (2, ny – 1) and (2, nz – 1), respectively. These indices are
chosen in this manner such that at j = 1 or j = ny, e. is either
on an absorbing boundary, or a shared boundary if it is an interior

partition. There is no reason to introduce additional logic that will
upset the vectorization of the inner loop, and these fields are simply
updated within a separate subroutine. Also note that h. is looped
over the entire range of i, j, and k. This is due to the fact that all the
necessary information is available on each processor to completely
update hx whether it is on a shared boundary or on an absorbing

boundary.

Table I illustrates the effects of the inner vector length on the

floating point speed. These results were generated using the loops
in (8) (case #1) on a single i860 processor and a single Cray-YMP

processor. As expected, longer vector lengths result in faster floating

point speeds, up to the optimal vector length (which was found to
be w 128 for the Cray-YMP, and w200 for the i860). This leads
to the conclusion that better floating point performance is realized
by maximizing the length of the inner loop. Unfortunately, as the
problem size is decreased the floating point speeds realized will
decrease. It will be shown in the following section, that this leads to
a degradation in the measured speedups when doing a fixed speedup
study.

V. NUMERICAL RESULTS

The parallel FDTD algorithms described in the previous section

were implemented on a number of platforms. The programs were

initially developed on the 32-node iPSC/860 at the University of

Kentucky and then ported directly to the Intel Delta at the California

Institute of Technology, as well as a number of sequential computers,

including the JPL Cray-YMP. The program has been fully validated

through a large number of numerical examples [12].

The purpose of this section is to present the computational effi-

ciency of the vector/parallel algorithm. The numerical results have

been obtained using the 512-node Intel Delta and a Cray-YMP, for a
benchmark comparison. Each processing node of the Intel Delta hosts
an i860 RISC processor with 12 Mb of RAM. The Intel Delta has a
high-speed network interconnecting nodes with a two-dimensional
mesh topology. The primary advantage of the mesh topology is
that the routing hardware is greatly simplified resulting in much
larger communication bandwidths (200 Mb/see). The efficiency of
the parallel code will be measured by the speedup of the parallel

Port 3

MltL!@Y

POn 1

Fig. 1. 3 dB, in-phase WWinson power divider printed on a 15 mil TMM
substrate (cT = 3.25).

-5

-lo

-15

g .*O

-25

-30

-35

-40
0510152025 30 35 40

f (GHz)

Fig. 2. Magnitude of the S-parameters of the Wilkinson power divider
illustrated in Fig. 1.

algorithm. To this end, two types of speedups are referenced fixed

speedup and scaled speedup. Fixed speed up (Sf ) is a measure of
the speedup of a fixed sized problem as the number of processors is
increased, whereas, scaled speedup (S. ) is a measure of the speedup
of a problem whose size scales with the number of processors. Finally,
the parallel efficiency is expressed as q(~) = S(P)/P x 100%.
Speedup is typically used to measure the degree of parallelism in a
code, or more specifically, the relationship between parallelism and
the serialism in a computer program. Unfortunately, fixed speedups
are asymptotically bound by the algorithm serialism, thus the amount

of serialism in an algorithm must be very small to obtain reasonable
fixed speedups over large numbers of processors. Scaled speedups
have the advantage that the problem size can be chosen such that

it maximizes the capacity of each processor. Large speedups are
expected from this perspective since the percentage of serialism is
constant as the problem is scaled.

As an example, the microstrip-line Wilkinson power divider illus-
trated in Fig. 1 was simulated using the FDTD method. The power
divider is printed on a 15 mil TMM substrate (e, = 3.25), and
is designed for 3 dB, equal phase power division at 9 GHz. For
isolation, a 100 Q chip resistor was placed across the apex of the
power divider, which was modeled as a distributed lumped load [5].
The mitered bends were modeled via a staircase approximation of the
regular orthogonal grid. Fig. 2 illustrates the S-parameters computed
using the parallel FDTD program. This model was based on a 99 x
151 x 20 mesh, where dx = dy = 3.6 roils, and dz = 3.75 roils.
The simulation required 2500 time iterations (dt = 0.15 ps).

Table II presents the time required to complete 2500 time-iterations
on the Intel Delta versus the number of processors using the proposed



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 10,OCTOBER 1995 2513

TABLE II
FIXEDSPEEDUPSTUDYFORWtLRtNSONPOWERDIVIDERONTHEINTEL DELTA

TNLE III
SCALEDSPEEDUPSTUDYON THE INTEL DELIA

(99 x151 x 20 LATTICEPER PROCESSOR)

B

)

o
0
0

0

0

b

FDTD algorithm. The benchmarked times are recorded in CPU-
seconds, which is identical to the wall clock time. The last two
columns of Table II are the fixed speedup and the parallel efficiency,
respectively. The speedup recorded for this small problem realizes

38% efficiency over 128 processors. The observed loss of parallel
efficiency as the number of processors is increased has multiple
causes. Initially, as the original problem is distributed over 128
processors, it reduces from 99 x 151 x 20 on a single processor to
roughly 13 x 10 x 20 on each of 128 processors. As a result, the ratio
of floating point operations to interprocessor communication greatly
decreases. Slight load imbalances also become more predominant for
smaller problem sizes since the CPU time is based on the slowest

processor. Furthermore, as discussed in Section IV, as the problem
size decreases, the FLOPS rate per processor decreases. From Table
I, the 99 x 151 x 20 sized problem is being performed at 14.9
MFLOPS on the single processor partition, whereas the 12 x 10 x
20 sized problem is being performed at approximately 8,1 MFLOPS

per processor on the 128-processor partition. This is a 55% reduction
in CPU speed. For benchmark comparison this problem was also
executed on a Cray-YMP. This simulation required 413 CPU’s on a
single processor, which is equivalent to roughly ten i860 processors.

The above example was also simulated using a parallel FDTD
method which utilizes the interprocessor communication scheme
suggested in [6]–[9]. The field updates were based on (5), (6), and
(8) so that the degradation in efficiency as compared to the method
described in this paper is only due to additional communication. A

speedup of 37 over 128 processors was recorded on the Intel Delta

(q = 29%) using this approach, as compared to 48.5 (n = 38%)
recorded in Table II. Since the Intel Delta is a tightly coupled

distributed computing environment and has relatively small latencies
and high network bandwidths, the speedup is only reduced by 25%.
However, in a loosely coupled distributed computing environment,
such as a workstation cluster, the loss of efficiency will be more
catastrophic due to large latencies and low network bandwidths.

A scaled speedup study was also performed on the Intel Delta.
This was done by scaling the problem size with the number of
processors. Maintaining a 99 x 151 x 20 grid on each processor,
the number of processors was scaled from 1–256 (the partitions were
kept as square as possible). The CPU times per time iteration and

the scaled speedups are recorded in Table III. Excellent speedups

are realized. Note that there is an initial jump in CPU time from
one to two processors, which is principally due to interprocessor
communication. This communication time is again increased for 16
processors, when the central processors in the mesh partition are
communicating about all four boundaries. Beyond 16 processors, the
scaled speedup remained linear.

A final example is the simulation of a larger device, specifically
the 8-way power divider illustrated in Fig. 3. The 8-way power
divider consisted of three stages of the Wilkinson power dividers
in Fig. 1. The FDTD model was based on a 475 x 343 x 20 mesh,

where dx = dy = 3.6 roils, and dz = 3.75 roils. The simulation

Port 1

(rJ

1’) -1

d-
11 II ( L--

Port 2

Port 3

Port 4

Port 5

PO1’t6

Port 7

Port 8

Port 9

Fig. 3. 8-way WWcinson power divider network printed on a 15 mil substrate
(G. = 3.25).

-5

-10

-15
m
u

-20

-25

-30

-35

0 5 10 20 25 S4

f ;:Hz)

Fig. 4. S-parameters of the power divider illustrated in Fig. 3. (a) Magnitude
of the S-parameters. [By symmetry S21 = S91, S31 = SS1, S41 = S71,
and 5’51 = S61.]

required 6000 time iterations (dt = 0.15 ps), which required 3700

CPU’s on 16 processors of the Delta (1950 CPU’s on 32 processors).
The amplitudes of the S-parameters computed for this device are

illustrated in Fig. 4. It is demonstrated that – 9 dB power division
is achieved at each output port at resonance. The ports were also of
equal phase over the spectrum, although this is not illustrated here.

W. CONCLUSION

In this paper, a parallel FDTD algorithm was presented for the
analysis of microwave circuits and devices. The algorithm, which
requires only one interprocessor communication per time iteration,
results in high parallel efficiencies. Benchmarked analyses presenting



2514 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO 10, OCTOBER 1995

the fixed and scaled speedups of the parallel FDTD algorithm were
provided, demonstrating the efficiency and the scalability of the
algorithm on the highly parallel Intel Delta. The existing parallel

FDTD algorithm is capable of supporting upwards of one billion
degrees of freedom on the Intel Delta, and is capable of solving a
problem of this magnitude in quite reasonable amounts of time. With
the rate of advances of RISC processors and dynamic random access
memory, high performance computers will be capable of handling
10’s of billions of degrees of freedom in a fraction of the time using

highly scalable algorithms such as the FDTD in the near future.

ACKNOWLEDGMENT

This research was performed in part using the Intel Touchstone
Delta System operated by the California Institute of Technology on
behalf of the Concurrent Supercomputing Consortium. Access to
this facility as well as to the Cray-YMP was provided by the Jet
Propulsion Laboratory, Pasadena, CA.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

D. Sheen, S. Ali, M. Abouzahra, and J. A. Kong, “Applicationofthe
three-dimensional finite-difference time-domain method to the analysis
of planar rnicrostrip circuits,” IEEE Trans. Microwave Theory Tech.,
vol. 38, pp. 849–856, July 1990.
X. Zhang, J. Fang, K. Mei, and W. Lin, “Calculation of the dkper-
sive characteristics of microstrips by a time-domain finite-difference
method,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 263–267,
Jan. 1988.
A. Taflove and M. E. Brodwin, “Numerical solution of steady-state elec-
tromagnetic scattering problems using the time-dependent Maxwell’s
equations~’ IEEE Trans. Microwave Theory Tech., vol. 23, pp.623–630,
Aug. 1975.
K. Kunzand R. Luebbers, The Finite-Difference Time-Domain Method
for Electromagnetic. Boca Raton, FL: CRC Press., 1993.
M. Plket-May, A. Tafiove, and J. Baron, “FD-TD modeling of digital
signal propagation in 3-D circuits with passive and active loads,” IEEE
Trans. Microwave Theory Tech., vol. 42, pp. 15 l&1523, Aug. 1994.
J. Patterson, T. Cwik, R. Ferraro, N. Jacobi, P. Liewer, T. Lockhart,
G. Lyzenga, J. Parker, and D. Simoni, “Paratlel computation applied
to electromagnetic scattering and radiation anatysis,” Hectromagnetics,
vol. 10, pp. 21-40, Jan.–June 1990.
R. D. Ferraro, “Solving partial differential equations for electromagnetic
scattering problems on coarse-grained concurrent computers,” in Com-
putational Electromagnetic and Supercomputer Architecture, T. Cwik
and J. Patterson, Eds. vol. 7; also in Progress in Electromagnetic
Research, J. A. Kong, Ed. Cambridge, MA: EMW Publishing, 1993,
vol. 7, pp. 111–154.
A. Perlik, T. Opsahl, and A. Taflove, “Predicting scattering of elec-
tromagnetic fields using the FD-TD on a connection machine,” IEEE
Trans. Magn., vol. 25, pp. 2910-2912, July 1989.
A. Perlik and S. Moraites, “Electromagnetic wave analysis using FD-TD
and its implementation on the connection machute,” in Computational
Electromagnetic and Supercomputer Architecture, M. Morgan, Ed., vol.
7; also in Progress in Electromagnetic Research, J. A. Kong, Ed.
Cambridge, MA: EMW Publishing, 1993, vol. 7. pp. 266-308.
W. C. Chew, Waves and Fields in Inhomogeneous Media. New York:
Van Nostrand, 1990.
V. Betz and R. Mittra, “Comparison and evaluation of boundary
conditions for the absorption of guided waves in an FDTD simulation,”
IEEE Microwave and Guided Wave Lett., vol. 2, pp. 499401, Dec. 1992.
Stephen D. Gedney, “Finite-difference time-domain analysis of mi-
crowave circuit devices on high performance parallel computers,” Univ.
of Kentucky, Lexington, KY, Elec. Eng. Tech. Rep. EE- 1-94, Feb. 1994.

Scattering from a Circular Dielectric Post Embedded
in a Grounded Dielectric Sheet Waveguide

E. Sawado, K. Ishibashi, and K. Hatakeyama

Abstract-A systematic method for obtaining the scattered electric field
in a gronnded dielectric sheet waveguide is presented. It is shown that
point-matching method can be used for an expticit calculation of the
integral eqnation to estimate the scattering from a circnlar dielectric post
embedded in the grounded sheet. Magnitude of the reflection coefficient
as a function of dielectric constant is given.

I. INTRODUCTION

In 1968 Schwinger published the lecture notes on the problem of
electromagnetic scattering by a circular dielectric rod in a rectangulm
waveguide [1]. It was described that, for some special relations
between the frequency, the dielectric coustant, and the radius of the
rod, the reflection coefficient becomes equal to zero [2], [3]. This
problem has been a subject of interest to researchers for many years.
In particular, attention was focused on the dip shown on the curve

of reflection coefficient, illustrating as a function of the dielectric
constant of the post. This phenomenon is due to volume resonance
of the post.

The aim of this paper is to present a theory of scattering by a
dielectric post (dielectric constant; <k = 2e0 N 5006.) embedded
in a grounded dielectric sheet (dielectric constant 6P = Hco, the
permittivity ~ = 2). The point-matching method was used for the
numerical estimation of magnitude of the reflection coefficient for
the dielectric post with various permittivities. Fig. 1 shows the cross
section of this structure. The structure is assumed to be uniform and
infinite in both z and z directions. It is also assumed that substrate
material is lossless.

For TE mode propagation, the electric field EY is a solution of

(1)

where ?& = Wzeopo.
Mathematically the problem of relating a field to its source is

that of integrating au inhomogeneous differential equation. Letting
jwpo~(z – z’)8(z – :’) be the source function, we have the form

–T<.z<o (2)

where R is the relative permittivity. We find the solution for Ev by
means of Laplace transform

J–cc

Multiplying both side of (1) and (2) by e~”, and integrating from
—cc to +@, we have

gg+(v’+k:)g=o O<x (4)

Manuscript received February 24, 1995; revised June 29, 1995.
E. Sawado is with the Tokyo Metropolitan University, Minami-Osawa,

Hachioji, Tokyo, 192-03, Japan.
K. Ishibashi is with the Tokai University, Department of Mechanical

Engineering, Tomigaya, Shibuya-ku, Tokyo, 151, Japan.
K. Hatakeyarna is with the NEC Corporation, Miyazaki, Miyamae-ku,

Kawasaki, Kanagawa, 216, Japan.
IEEE Log Number 9414233.

0018-9480/95$04.00 @ 1995 IEEE


